American Statistical Association
New York City
Metropolitan Area Chapter

The Levin Lecture Series
Department of Biostatistics
Columbia University



Pei Wang, Ph.D.
Associate Professor of Biostatistics
Fred Hutchinson Cancer Research Center

Host: Dr. Shuang Wang


Recent proteomic studies have identified proteins related to specific phenotypes. In addition to marginal association analysis for individual proteins, analyzing pathways (functionally related sets of proteins) may yield additional valuable insights. Identifying pathways that differ between phenotypes can be conceptualized as a multivariate hypothesis testing problem: whether the mean vector of a p-dimensional random vector X is mu0. This problem is complicated by the facts that the sample sizes are often small and there are substantial missing data in proteomic studies. To tackle these challenges, we first propose a regularized Hotelling's T2 (RHT) statistic together with a non-parametric testing procedure, which effectively controls the type I error rate and maintains good power in the presence of complex correlation structures and missing data patterns. We investigate asymptotic properties of the RHT statistic under pertinent assumptions and compare the test performance with other existing methods through simulations and real data examples. In the second part of this talk, we further propose to employ regularization in EM algorithm to more accurately estimate the mean vector and covariance matrix when data are missing at random and when data are missing not at random.

Biographical Note

Dr. Pei Wang received her Ph.D. degree in Statistics from Stanford University in 2004. She then joined Fred Hutchinson Cancer Research Center, Seattle, WA, and now is an associate faculty member in the program of biostatistics. She is also an Affiliate Associate Professor in the department of biostatistics, University of Washington. Dr. Wang's research interests have focused on high dimensional genomics/proteomics data analysis, network inference and multivariate analysis. She has also been collaborating with scientists in Fred Hutchinson on a range of biomarker and epidemiology studies.

Date: Thursday, November 17, 2011
Time: 4:00 - 5:00 P.M.
Location: Mailman School of Public Health
Department of Biostatistics
722 West 168th Street
Biostatistics Computer Lab
6th Floor - Room 656
New York, New York


Informal tea at 3:40 P.M.

Home Page | Chapter News | Chapter Officers | Chapter Events
Other Metro Area Events | ASA National Home Page | Links To Other Websites
NYC ASA Chapter Constitution | NYC ASA Chapter By-Laws

Page last modified on November 14, 2011

Copyright © 1998-2011 by New York City Metropolitan Area Chapter of the ASA
Designed and maintained by Cynthia Scherer
Send questions or comments to